Javascript required
Skip to content Skip to sidebar Skip to footer

Mitochondrial Multiplex Real-time Pcr as a Source Tracking Method in Fecal-contaminated Effluents

Field assessment of horse-associated genetic markers HoF597 and mtCytb for detecting the source of contamination in surface waters

Abstract

We investigated the specificity and sensitivity of two horse-associated markers, HoF597 and Horse mtCytb, and 12 mitochondrial and bacterial markers of six animal species (human, cow, pig, bird, dog, chicken) in the faecal samples of 50 individual horses. Both horse markers were detected in 48 (96%) faecal samples. Cross-reactivity with dog (BacCan545) and pig (P23-2) occurred in 88% and 72% of horse faecal samples, respectively. Several other bacterial and mitochondrial markers of non-target hosts were also detected; however, their specificities were >80%. Analyses of samples from surface waters (n = 11) on or adjacent to properties from which horse faecal samples had been collected showed only the presence of HoF597 but not horse mitochondrial marker. Our data suggest that while bacterial and (or) mitochondrial markers of other animal species may be present in horse faeces, dog and pig markers may predominantly be present in horse faecal samples, which points to their nonspecificity as markers for microbial source tracking. Although HoF597 and Horse mtCytb are highly sensitive and specific for the detection of horse faecal pollution, because of their low numbers, mitochondrial (mtDNA) markers may not be robust for screening surface waters.

Résumé

Les auteurs ont étudié la spécificité et la sensibilité de deux marqueurs associés au cheval, HoF597 et le mtCytb équin, et 12 marqueurs mitochondriaux et bactériens de six espèces animales (humain, vache, porc, oiseau, chien, poulet) dans des échantillons fécaux de 50 chevaux. Les deux marqueurs équins ont été détectés dans 48 (96 %) des échantillons fécaux. Une réactivité croisée avec le chien (BacCan545) et le porc (P23-2) était détectée dans 88 % et 72 % des échantillons fécaux de cheval, respectivement. Plusieurs autres marqueurs bactériens et mitochondriaux d'hôtes non ciblés ont aussi été détectés, mais leur spécificité était supérieure à 80 %. Les analyses des échantillons des eaux de surface (n = 11) sur ou à proximité des propriétés sur lesquelles les échantillons fécaux de cheval ont été prélevés montraient la présence de HoF597 uniquement, mais pas du marqueur mitochondrial équin. Ces données suggèrent que si des marqueurs bactériens ou mitochondriaux d'autres espèces animales peuvent être présents dans les fèces du chevant, les marqueurs du chien et du porc peuvent être principalement présents dans les échantillons fécaux du cheval, ce qui indique leur non-spécificité en tant que marqueurs pour le dépistage des sources microbiennes. Même si HoF597 et le mtCytb équin sont hautement sensibles et spécifiques pour la détection de la pollution fécale des chevaux, en raison de leur faible nombre, les marqueurs mitochondriaux (ADNmt) pourraient ne pas être robustes pour le dépistage des eaux de surface. [Traduit par la Rédaction]

References

Ahmed W., Powell D., Goonetilleke A., and Gardner T. 2008. Detection and source identification of faecal pollution in non-sewered catchment by means of host-specific molecular markers. Water Sci. Technol. 58(3): 579–586.

Baker-Austin C., Rangdale R., Lowther J., and Lees D.N. 2010. Application of mitochondrial DNA analysis for microbial source tracking purposes in shellfish harvesting waters. Water Sci. Technol. 61: 1–7.

Bernhard A.E. and Field K.G. 2000. Identification of nonpoint sources of fecal pollution in coastal waters by using host-specific 16S ribosomal DNA genetic markers from fecal anaerobes. Appl. Environ. Microbiol. 66: 1587–1594.

Boehm A.B., Van De Werfhorst L.C., Griffith J.F., Holden P.A., Jay J.A., Shanks O.C., et al. 2013. Performance of forty-one microbial source tracking methods: a twenty-seven lab evaluation study. Water Res. 47: 6812–6828.

Caldwell J.M. and Levine J.F. 2009. Domestic wastewater influent profiling using mitochondrial real-time PCR for source tracking animal contamination. J. Microbiol. Methods, 77: 17–22.

Caldwell J.M., Raley M.E., and Levine J.F. 2007. Mitochondrial multiplex real-time PCR as a source tracking method in fecal-contaminated effluents. Environ. Sci. Technol. 41: 3277–3283.

Cao Y., Griffith J.F., Dorevitch S., and Weisberg S.B. 2012. Effectiveness of qPCR permutations, internal controls and dilution as means for minimizing the impact of inhibition while measuring Enterococcus in environmental waters. J. Appl. Microbiol. 113: 66–75.

Dick L.K., Bernhard A.E., Brodeur T.J., Santo Domingo J.W., Simpson J.M., Walters S.P., and Field K.G. 2005. Host distributions of uncultivated fecal Bacteroidales bacteria reveal genetic markers for fecal source identification. Appl. Environ. Microbiol. 71: 3184–3191.

Gourmelon M., Caprais M.P., Ségura R., Le Mennec C., Lozach S., Piriou J.Y., and Rincé A. 2007. Evaluation of two library-independent microbial source tracking methods to identify sources of fecal contamination in French estuaries. Appl. Environ. Microbiol. 73: 4857–4866.

Green H.C., Dick L.K., Gilpin B., Samadpour M., and Field K.G. 2012. Genetic markers for rapid PCR-based identification of gull, Canada goose, duck, and chicken fecal contamination in water. Appl. Environ. Microbiol. 78: 503–510.

Griffith J., Cao Y., McGee C., and Weisberg S. 2009. Evaluation of rapid methods and novel indicators for assessing microbiological beach water quality. Water Res. 43: 4900–4907.

Hagedorn, C., Blanch, A.R., and Harwood, V.J. (Editors). 2011. Microbial source tracking: methods, applications, and case studies. Springer, New York, USA.

Harwood, V.J., and Stoeckel, D.M. 2011. Performance criteria. In Microbial source tracking: methods, applications, and case studies. Edited by C. Hagedorn, A.R. Blanch, and V.J. Harwood. Springer, New York, USA. pp. 7–30.

Harwood V.J., Staley C., Badgley B.D., Borges K., and Korajkic A. 2014. Microbial source tracking markers for detection of fecal contamination in environmental waters: relationships between pathogens and human health outcomes. FEMS Microbiol. Rev. 38: 1–40.

He X., Chen H., Shi W., Cui Y., and Zhang X.-X. 2015. Persistence of mitochondrial DNA markers as fecal indicators in water environments. Sci. Total Environ. 533: 383–390.

Kildare B.J., Leutenegger C.M., McSwain B.S., Bambic D.G., Rajal V.B., and Wuertz S. 2007. 16S rRNA-based assays for quantitative detection of universal, human-, cow-, and dog-specific fecal Bacteroidales: a Bayesian approach. Water Res. 41: 3701–3715.

Krentz C.A., Prystajecky N., and Isaac-Renton J. 2013. Identification of fecal contamination sources in water using host-associated markers. Can. J. Microbiol. 59(3): 210–220.

Lamendella R., Santo Domingo J.W., Yannarell A.C., Ghosh S., Di Giovanni G., Mackie R.I., and Oerther D.B. 2009. Evaluation of swine-specific PCR assays used for fecal source tracking and analysis of molecular diversity of swine-specific "Bacteroidales" populations. Appl. Environ. Microbiol. 75: 5787–5796.

Lu J., Santo Domingo J., and Shanks O.C. 2007. Identification of chicken-specific fecal microbial sequences using a metagenomic approach. Water Res. 41: 3561–3574.

Martellini A., Payment P., and Villemur R. 2005. Use of eukaryotic mitochondrial DNA to differentiate human, bovine, porcine and ovine sources in fecally contaminated surface water. Water Res. 39: 541–548.

Odagiri M., Schriewer A., Hanley K., Wuertz S., Misra P.R., Panigrahi P., and Jenkins M.W. 2015. Validation of Bacteroidales quantitative PCR assays targeting human and animal fecal contamination in the public and domestic domains in India. Sci. Total Environ. 502: 462–470.

Reischer G.H., Ebdon J.E., Bauer J.M., Schuster N., Ahmed W., Åström J., et al. 2013. Performance characteristics of qPCR assays targeting human- and ruminant-associated Bacteroidetes for microbial source tracking across sixteen countries on six continents. Environ. Sci. Technol. 47(15): 8548–8556.

Roslev P. and Bukh A.S. 2011. State of the art molecular markers for fecal pollution source tracking in water. Appl. Microbiol. Biotechnol. 89: 1341–1355.

Santo Domingo, J.W., and Edge, T.A. 2010. Identification of primary sources of faecal pollution. Chapter 5. In Safe management of shellfish and harvest waters. Edited by G. Rees, K. Pond, D. Kay, J. Bartram, and J. Santo Domingo. IWA Publishing on behalf of the World Health Organization, London, UK.

Sargeant, D., Kammin, W.R., and Collyard, S. 2011. Review and critique of current microbial source tracking (MST) techniques. Washington State Department of Ecology, Washington, D.C., USA.

Schill W.B. and Mathes M.V. 2008. Real-time PCR detection and quantification of nine potential sources of fecal contamination by analysis of mitochondrial cytochrome b targets. Environ. Sci. Technol. 42: 5229–5234.

Shanks O.C., White K., Kelty C.A., Sivaganesan M., Blannon J., Meckes M., et al. 2010. Performance of PCR-based assays targeting Bacteroidales genetic markers of human fecal pollution in sewage and fecal samples. Environ. Sci. Technol. 44: 6281–6288.

Silkie S.S. and Nelson K.L. 2009. Concentrations of host-specific and generic fecal markers measured by quantitative PCR in raw sewage and fresh animal feces. Water Res. 43: 4860–4871.

Tambalo D.D., Boa T., Liljebjelke K., and Yost C.K. 2012. Evaluation of two quantitative PCR assays using Bacteroidales and mitochondrial DNA markers for tracking dog fecal contamination in waterbodies. J. Microbiol. Methods, 91: 459–467.

Ufnar J.A., Ufnar D.F., Wang S.Y., and Ellender R.D. 2007. Development of a swine-specific fecal pollution marker based on host differences in methanogen mcrA genes. Appl. Environ. Microbiol. 73: 5209–5217.

Supplementary Material

Supplementary data (cjm-2019-0499suppla.zip)

Information & Authors

Information

Published In

Canadian Journal of Microbiology cover image

Canadian Journal of Microbiology

Volume 66 Number 11 November 2020

History

Received: 25 September 2019

Revision received: 19 February 2020

Accepted: 21 February 2020

Published online: 21 July 2020

Copyright

© 2020.

Permissions

Request permissions for this article.

Key Words

  1. field assessment
  2. HoF597 marker
  3. microbial source tracking
  4. mtCytb
  5. surface waters

Mots-clés

  1. évaluation sur le terrain
  2. marqueur HoF597
  3. dépistage des sources microbiennes
  4. mtCytb
  5. eaux de surface

Authors

Affiliations

Jessica Gray

Genecology Research Centre, School of Health and Sport Sciences, University of the Sunshine Coast, Maroochydore DC 4558, Queensland, Australia.

Nicole Masters

Genecology Research Centre, School of Health and Sport Sciences, University of the Sunshine Coast, Maroochydore DC 4558, Queensland, Australia.

Aaron Wiegand

School of Science and Engineering, University of the Sunshine Coast, Maroochydore DC 4558, Queensland, Australia.

Genecology Research Centre, School of Health and Sport Sciences, University of the Sunshine Coast, Maroochydore DC 4558, Queensland, Australia.

Notes

Copyright remains with the author(s) or their institution(s). Permission for reuse (free in most cases) can be obtained from copyright.com.

Metrics & Citations

Metrics

Citations

View Options

Media

Figures

Other

Tables

Share

Mitochondrial Multiplex Real-time Pcr as a Source Tracking Method in Fecal-contaminated Effluents

Source: https://cdnsciencepub.com/doi/abs/10.1139/cjm-2019-0499